Chapter 4

Mining Data Streams

Most of the algorithms described in this book assume that we are mining a database. That is, all our data is available when and if we want it. In this chapter, we shall make another assumption: data arrives in a stream or streams, and if it is not processed immediately or stored, then it is lost forever. Moreover, we shall assume that the data arrives so rapidly that it is not feasible to store it all in active storage (i.e., in a conventional database), and then interact with it at the time of our choosing.

The algorithms for processing streams each involve summarization of the stream in some way. We shall start by considering how to make a useful sample of a stream and how to filter a stream to eliminate most of the "undesirable" elements. We then show how to estimate the number of different elements in a stream using much less storage than would be required if we listed all the elements we have seen.

Another approach to summarizing a stream is to look at only a fixed-length "window" consisting of the last n elements for some (typically large) n. We then query the window as if it were a relation in a database. If there are many streams and/or n is large, we may not be able to store the entire window for every stream, so we need to summarize even the windows. We address the fundamental problem of maintaining an approximate count on the number of 1's in the window of a bit stream, while using much less space than would be needed to store the entire window itself. This technique generalizes to approximating various kinds of sums.

4.1 The Stream Data Model

Let us begin by discussing the elements of streams and stream processing. We explain the difference between streams and databases and the special problems that arise when dealing with streams. Some typical applications where the stream model applies will be examined.

Figure 4.1: A data-stream-management system

4.1.1 A Data-Stream-Management System

In analogy to a database-management system, we can view a stream processor as a kind of data-management system, the high-level organization of which is suggested in Fig. 4.1. Any number of streams can enter the system. Each stream can provide elements at its own schedule; they need not have the same data rates or data types, and the time between elements of one stream need not be uniform. The fact that the rate of arrival of stream elements is not under the control of the system distinguishes stream processing from the processing of data that goes on within a database-management system. The latter system controls the rate at which data is read from the disk, and therefore never has to worry about data getting lost as it attempts to execute queries.

Streams may be archived in a large archival store, but we assume it is not possible to answer queries from the archival store. It could be examined only under special circumstances using time-consuming retrieval processes. There is also a working store, into which summaries or parts of streams may be placed, and which can be used for answering queries. The working store might be disk, or it might be main memory, depending on how fast we need to process queries. But either way, it is of sufficiently limited capacity that it cannot store all the data from all the streams.

4.1.2 Examples of Stream Sources

Before proceeding, let us consider some of the ways in which stream data arises naturally.

Sensor Data

Imagine a temperature sensor bobbing about in the ocean, sending back to a base station a reading of the surface temperature each hour. The data produced by this sensor is a stream of real numbers. It is not a very interesting stream, since the data rate is so low. It would not stress modern technology, and the entire stream could be kept in main memory, essentially forever.

Now, give the sensor a GPS unit, and let it report surface height instead of temperature. The surface height varies quite rapidly compared with temperature, so we might have the sensor send back a reading every tenth of a second. If it sends a 4 -byte real number each time, then it produces 3.5 megabytes per day. It will still take some time to fill up main memory, let alone a single disk.

But one sensor might not be that interesting. To learn something about ocean behavior, we might want to deploy a million sensors, each sending back a stream, at the rate of ten per second. A million sensors isn't very many; there would be one for every 150 square miles of ocean. Now we have 3.5 terabytes arriving every day, and we definitely need to think about what can be kept in working storage and what can only be archived.

Image Data

Satellites often send down to earth streams consisting of many terabytes of images per day. Surveillance cameras produce images with lower resolution than satellites, but there can be many of them, each producing a stream of images at intervals like one second. London is said to have six million such cameras, each producing a stream.

Internet and Web Traffic

A switching node in the middle of the Internet receives streams of IP packets from many inputs and routes them to its outputs. Normally, the job of the switch is to transmit data and not to retain it or query it. But there is a tendency to put more capability into the switch, e.g., the ability to detect denial-of-service attacks or the ability to reroute packets based on information about congestion in the network.

Web sites receive streams of various types. For example, Google receives several hundred million search queries per day. Yahoo! accepts billions of "clicks" per day on its various sites. Many interesting things can be learned from these streams. For example, an increase in queries like "sore throat" enables us to track the spread of viruses. A sudden increase in the click rate for a link could
indicate some news connected to that page, or it could mean that the link is broken and needs to be repaired.

4.1.3 Stream Queries

There are two ways that queries get asked about streams. We show in Fig. 4.1 a place within the processor where standing queries are stored. These queries are, in a sense, permanently executing, and produce outputs at appropriate times.

Example 4.1: The stream produced by the ocean-surface-temperature sensor mentioned at the beginning of Section 4.1.2 might have a standing query to output an alert whenever the temperature exceeds 25 degrees centigrade. This query is easily answered, since it depends only on the most recent stream element.

Alternatively, we might have a standing query that, each time a new reading arrives, produces the average of the 24 most recent readings. That query also can be answered easily, if we store the 24 most recent stream elements. When a new stream element arrives, we can drop from the working store the 25 th most recent element, since it will never again be needed (unless there is some other standing query that requires it).

Another query we might ask is the maximum temperature ever recorded by that sensor. We can answer this query by retaining a simple summary: the maximum of all stream elements ever seen. It is not necessary to record the entire stream. When a new stream element arrives, we compare it with the stored maximum, and set the maximum to whichever is larger. We can then answer the query by producing the current value of the maximum. Similarly, if we want the average temperature over all time, we have only to record two values: the number of readings ever sent in the stream and the sum of those readings. We can adjust these values easily each time a new reading arrives, and we can produce their quotient as the answer to the query.

The other form of query is $a d-h o c$, a question asked once about the current state of a stream or streams. If we do not store all streams in their entirety, as normally we can not, then we cannot expect to answer arbitrary queries about streams. If we have some idea what kind of queries will be asked through the ad-hoc query interface, then we can prepare for them by storing appropriate parts or summaries of streams as in Example 4.1.

If we want the facility to ask a wide variety of ad-hoc queries, a common approach is to store a sliding window of each stream in the working store. A sliding window can be the most recent n elements of a stream, for some n, or it can be all the elements that arrived within the last t time units, e.g., one day. If we regard each stream element as a tuple, we can treat the window as a relation and query it with any SQL query. Of course the stream-management system must keep the window fresh, deleting the oldest elements as new ones come in.

Example 4.2: Web sites often like to report the number of unique users over the past month. If we think of each login as a stream element, we can maintain a window that is all logins in the most recent month. We must associate the arrival time with each login, so we know when it no longer belongs to the window. If we think of the window as a relation Logins (name, time), then it is simple to get the number of unique users over the past month. The SQL query is:

```
SELECT COUNT(DISTINCT(name))
FROM Logins
WHERE time >= t;
```

Here, t is a constant that represents the time one month before the current time.

Note that we must be able to maintain the entire stream of logins for the past month in working storage. However, for even the largest sites, that data is not more than a few terabytes, and so surely can be stored on disk.

4.1.4 Issues in Stream Processing

Before proceeding to discuss algorithms, let us consider the constraints under which we work when dealing with streams. First, streams often deliver elements very rapidly. We must process elements in real time, or we lose the opportunity to process them at all, without accessing the archival storage. Thus, it often is important that the stream-processing algorithm is executed in main memory, without access to secondary storage or with only rare accesses to secondary storage. Moreover, even when streams are "slow," as in the sensor-data example of Section 4.1.2, there may be many such streams. Even if each stream by itself can be processed using a small amount of main memory, the requirements of all the streams together can easily exceed the amount of available main memory.

Thus, many problems about streaming data would be easy to solve if we had enough memory, but become rather hard and require the invention of new techniques in order to execute them at a realistic rate on a machine of realistic size. Here are two generalizations about stream algorithms worth bearing in mind as you read through this chapter:

- Often, it is much more efficient to get an approximate answer to our problem than an exact solution.
- As in Chapter 3, a variety of techniques related to hashing turn out to be useful. Generally, these techniques introduce useful randomness into the algorithm's behavior, in order to produce an approximate answer that is very close to the true result.

4.2 Sampling Data in a Stream

As our first example of managing streaming data, we shall look at extracting reliable samples from a stream. As with many stream algorithms, the "trick" involves using hashing in a somewhat unusual way.

4.2.1 A Motivating Example

The general problem we shall address is selecting a subset of a stream so that we can ask queries about the selected subset and have the answers be statistically representative of the stream as a whole. If we know what queries are to be asked, then there are a number of methods that might work, but we are looking for a technique that will allow ad-hoc queries on the sample. We shall look at a particular problem, from which the general idea will emerge.

Our running example is the following. A search engine receives a stream of queries, and it would like to study the behavior of typical users. ${ }^{1}$ We assume the stream consists of tuples (user, query, time). Suppose that we want to answer queries such as "What fraction of the typical user's queries were repeated over the past month?" Assume also that we wish to store only $1 / 10$ th of the stream elements.

The obvious approach would be to generate a random number, say an integer from 0 to 9 , in response to each search query. Store the tuple if and only if the random number is 0 . If we do so, each user has, on average, $1 / 10$ th of their queries stored. Statistical fluctuations will introduce some noise into the data, but if users issue many queries, the law of large numbers will assure us that most users will have a fraction quite close to $1 / 10$ th of their queries stored.

However, this scheme gives us the wrong answer to the query asking for the average number of duplicate queries for a user. Suppose a user has issued s search queries one time in the past month, d search queries twice, and no search queries more than twice. If we have a $1 / 10$ th sample, of queries, we shall see in the sample for that user an expected $s / 10$ of the search queries issued once. Of the d search queries issued twice, only $d / 100$ will appear twice in the sample; that fraction is d times the probability that both occurrences of the query will be in the $1 / 10$ th sample. Of the queries that appear twice in the full stream, $18 d / 100$ will appear exactly once. To see why, note that $18 / 100$ is the probability that one of the two occurrences will be in the $1 / 10$ th of the stream that is selected, while the other is in the $9 / 10$ th that is not selected.

The correct answer to the query about the fraction of repeated searches is $d /(s+d)$. However, the answer we shall obtain from the sample is $d /(10 s+19 d)$. To derive the latter formula, note that $d / 100$ appear twice, while $s / 10+18 d / 100$ appear once. Thus, the fraction appearing twice in the sample is $d / 100$ divided

[^0]by $d / 100+s / 10+18 d / 100$. This ratio is $d /(10 s+19 d)$. for no positive values of s and d is $d /(s+d)=d /(10 s+19 d)$.

4.2.2 Obtaining a Representative Sample

The query of Section 4.2.1, like many queries about the statistics of typical users, cannot be answered by taking a sample of each user's search queries. Thus, we must strive to pick $1 / 10$ th of the users, and take all their searches for the sample, while taking none of the searches from other users. If we can store a list of all users, and whether or not they are in the sample, then we could do the following. Each time a search query arrives in the stream, we look up the user to see whether or not they are in the sample. If so, we add this search query to the sample, and if not, then not. However, if we have no record of ever having seen this user before, then we generate a random integer between 0 and 9 . If the number is 0 , we add this user to our list with value "in," and if the number is other than 0 , we add the user with the value "out."

That method works as long as we can afford to keep the list of all users and their in/out decision in main memory, because there isn't time to go to disk for every search that arrives. By using a hash function, one can avoid keeping the list of users. That is, we hash each user name to one of ten buckets, 0 through 9. If the user hashes to bucket 0 , then accept this search query for the sample, and if not, then not.

Note we do not actually store the user in the bucket; in fact, there is no data in the buckets at all. Effectively, we use the hash function as a random-number generator, with the important property that, when applied to the same user several times, we always get the same "random" number. That is, without storing the in/out decision for any user, we can reconstruct that decision any time a search query by that user arrives.

More generally, we can obtain a sample consisting of any rational fraction a / b of the users by hashing user names to b buckets, 0 through $b-1$. Add the search query to the sample if the hash value is less than a.

4.2.3 The General Sampling Problem

The running example is typical of the following general problem. Our stream consists of tuples with n components. A subset of the components are the key components, on which the selection of the sample will be based. In our running example, there are three components - user, query, and time - of which only user is in the key. However, we could also take a sample of queries by making query be the key, or even take a sample of user-query pairs by making both those components form the key.

To take a sample of size a / b, we hash the key value for each tuple to b buckets, and accept the tuple for the sample if the hash value is less than a. If the key consists of more than one component, the hash function needs to combine the values for those components to make a single hash-value. The
result will be a sample consisting of all tuples with certain key values. The selected key values will be approximately a / b of all the key values appearing in the stream.

4.2.4 Varying the Sample Size

Often, the sample will grow as more of the stream enters the system. In our running example, we retain all the search queries of the selected $1 / 10$ th of the users, forever. As time goes on, more searches for the same users will be accumulated, and new users that are selected for the sample will appear in the stream.

If we have a budget for how many tuples from the stream can be stored as the sample, then the fraction of key values must vary, lowering as time goes on. In order to assure that at all times, the sample consists of all tuples from a subset of the key values, we choose a hash function h from key values to a very large number of values $0,1, \ldots, B-1$. We maintain a threshold t, which initially can be the largest bucket number, $B-1$. At all times, the sample consists of those tuples whose key K satisfies $h(K) \leq t$. New tuples from the stream are added to the sample if and only if they satisfy the same condition.

If the number of stored tuples of the sample exceeds the allotted space, we lower t to $t-1$ and remove from the sample all those tuples whose key K hashes to t. For efficiency, we can lower t by more than 1, and remove the tuples with several of the highest hash values, whenever we need to throw some key values out of the sample. Further efficiency is obtained by maintaining an index on the hash value, so we can find all those tuples whose keys hash to a particular value quickly.

4.2.5 Exercises for Section 4.2

Exercise 4.2.1: Suppose we have a stream of tuples with the schema
Grades(university, courseID, studentID, grade)

Assume universities are unique, but a courseID is unique only within a university (i.e., different universities may have different courses with the same ID, e.g., "CS101") and likewise, studentID's are unique only within a university (different universities may assign the same ID to different students). Suppose we want to answer certain queries approximately from a $1 / 20$ th sample of the data. For each of the queries below, indicate how you would construct the sample. That is, tell what the key attributes should be.
(a) For each university, estimate the average number of students in a course.
(b) Estimate the fraction of students who have a GPA of 3.5 or more.
(c) Estimate the fraction of courses where at least half the students got "A."

4.3 Filtering Streams

Another common process on streams is selection, or filtering. We want to accept those tuples in the stream that meet a criterion. Accepted tuples are passed to another process as a stream, while other tuples are dropped. If the selection criterion is a property of the tuple that can be calculated (e.g., the first component is less than 10), then the selection is easy to do. The problem becomes harder when the criterion involves lookup for membership in a set. It is especially hard, when that set is too large to store in main memory. In this section, we shall discuss the technique known as "Bloom filtering" as a way to eliminate most of the tuples that do not meet the criterion.

4.3.1 A Motivating Example

Again let us start with a running example that illustrates the problem and what we can do about it. Suppose we have a set S of one billion allowed email addresses - those that we will allow through because we believe them not to be spam. The stream consists of pairs: an email address and the email itself. Since the typical email address is 20 bytes or more, it is not reasonable to store S in main memory. Thus, we can either use disk accesses to determine whether or not to let through any given stream element, or we can devise a method that requires no more main memory than we have available, and yet will filter most of the undesired stream elements.

Suppose for argument's sake that we have one gigabyte of available main memory. In the technique known as Bloom filtering, we use that main memory as a bit array. In this case, we have room for eight billion bits, since one byte equals eight bits. Devise a hash function h from email addresses to eight billion buckets. Hash each member of S to a bit, and set that bit to 1 . All other bits of the array remain 0 .

Since there are one billion members of S, approximately $1 / 8$ th of the bits will be 1. The exact fraction of bits set to 1 will be slightly less than $1 / 8$ th, because it is possible that two members of S hash to the same bit. We shall discuss the exact fraction of 1's in Section 4.3.3. When a stream element arrives, we hash its email address. If the bit to which that email address hashes is 1 , then we let the email through. But if the email address hashes to a 0 , we are certain that the address is not in S, so we can drop this stream element.

Unfortunately, some spam email will get through. Approximately $1 / 8$ th of the stream elements whose email address is not in S will happen to hash to a bit whose value is 1 and will be let through. Nevertheless, since the majority of emails are spam (about 80% according to some reports), eliminating $7 / 8$ th of the spam is a significant benefit. Moreover, if we want to eliminate every spam, we need only check for membership in S those good and bad emails that get through the filter. Those checks will require the use of secondary memory to access S itself. There are also other options, as we shall see when we study the general Bloom-filtering technique. As a simple example, we could use a cascade
of filters, each of which would eliminate $7 / 8$ th of the remaining spam.

4.3.2 The Bloom Filter

A Bloom filter consists of:

1. An array of n bits, initially all 0 's.
2. A collection of hash functions $h_{1}, h_{2}, \ldots, h_{k}$. Each hash function maps "key" values to n buckets, corresponding to the n bits of the bit-array.
3. A set S of m key values.

The purpose of the Bloom filter is to allow through all stream elements whose keys are in S, while rejecting most of the stream elements whose keys are not in S.

To initialize the bit array, begin with all bits 0 . Take each key value in S and hash it using each of the k hash functions. Set to 1 each bit that is $h_{i}(K)$ for some hash function h_{i} and some key value K in S.

To test a key K that arrives in the stream, check that all of

$$
h_{1}(K), h_{2}(K), \ldots, h_{k}(K)
$$

are 1's in the bit-array. If all are 1's, then let the stream element through. If one or more of these bits are 0 , then K could not be in S, so reject the stream element.

4.3.3 Analysis of Bloom Filtering

If a key value is in S, then the element will surely pass through the Bloom filter. However, if the key value is not in S, it might still pass. We need to understand how to calculate the probability of a false positive, as a function of n, the bit-array length, m the number of members of S, and k, the number of hash functions.

The model to use is throwing darts at targets. Suppose we have x targets and y darts. Any dart is equally likely to hit any target. After throwing the darts, how many targets can we expect to be hit at least once? The analysis is similar to the analysis in Section 3.4.2, and goes as follows:

- The probability that a given dart will not hit a given target is $(x-1) / x$.
- The probability that none of the y darts will hit a given target is $\left(\frac{x-1}{x}\right)^{y}$. We can write this expression as $\left(1-\frac{1}{x}\right)^{x\left(\frac{y}{x}\right)}$.
- Using the approximation $(1-\epsilon)^{1 / \epsilon}=1 / e$ for small ϵ (recall Section 1.3.5), we conclude that the probability that none of the y darts hit a given target is $e^{-y / x}$.

Example 4.3: Consider the running example of Section 4.3.1. We can use the above calculation to get the true expected number of 1's in the bit array. Think of each bit as a target, and each member of S as a dart. Then the probability that a given bit will be 1 is the probability that the corresponding target will be hit by one or more darts. Since there are one billion members of S, we have $y=10^{9}$ darts. As there are eight billion bits, there are $x=8 \times 10^{9}$ targets. Thus, the probability that a given target is not hit is $e^{-y / x}=e^{-1 / 8}$ and the probability that it is hit is $1-e^{-1 / 8}$. That quantity is about 0.1175 . In Section 4.3 .1 we suggested that $1 / 8=0.125$ is a good approximation, which it is, but now we have the exact calculation.

We can apply the rule to the more general situation, where set S has m members, the array has n bits, and there are k hash functions. The number of targets is $x=n$, and the number of darts is $y=k m$. Thus, the probability that a bit remains 0 is $e^{-k m / n}$. We want the fraction of 0 bits to be fairly large, or else the probability that a nonmember of S will hash at least once to a 0 becomes too small, and there are too many false positives. For example, we might choose k, the number of hash functions to be n / m or less. Then the probability of a 0 is at least e^{-1} or 37%. In general, the probability of a false positive is the probability of a 1 bit, which is $1-e^{-k m / n}$, raised to the k th power, i.e., $\left(1-e^{-k m / n}\right)^{k}$.

Example 4.4: In Example 4.3 we found that the fraction of 1's in the array of our running example is 0.1175 , and this fraction is also the probability of a false positive. That is, a nonmember of S will pass through the filter if it hashes to a 1 , and the probability of it doing so is 0.1175 .

Suppose we used the same S and the same array, but used two different hash functions. This situation corresponds to throwing two billion darts at eight billion targets, and the probability that a bit remains 0 is $e^{-1 / 4}$. In order to be a false positive, a nonmember of S must hash twice to bits that are 1 , and this probability is $\left(1-e^{-1 / 4}\right)^{2}$, or approximately 0.0493 . Thus, adding a second hash function for our running example is an improvement, reducing the false-positive rate from 0.1175 to 0.0493 .

4.3.4 Exercises for Section 4.3

Exercise 4.3.1: For the situation of our running example (8 billion bits, 1 billion members of the set S), calculate the false-positive rate if we use three hash functions? What if we use four hash functions?
! Exercise 4.3.2 : Suppose we have n bits of memory available, and our set S has m members. Instead of using k hash functions, we could divide the n bits into k arrays, and hash once to each array. As a function of n, m, and k, what is the probability of a false positive? How does it compare with using k hash functions into a single array?
!! Exercise 4.3.3: As a function of n, the number of bits and m the number of members in the set S, what number of hash functions minimizes the falsepositive rate?

4.4 Counting Distinct Elements in a Stream

In this section we look at a third simple kind of processing we might want to do on a stream. As with the previous examples - sampling and filtering - it is somewhat tricky to do what we want in a reasonable amount of main memory, so we use a variety of hashing and a randomized algorithm to get approximately what we want with little space needed per stream.

4.4.1 The Count-Distinct Problem

Suppose stream elements are chosen from some universal set. We would like to know how many different elements have appeared in the stream, counting either from the beginning of the stream or from some known time in the past.

Example 4.5 : As a useful example of this problem, consider a Web site gathering statistics on how many unique users it has seen in each given month. The universal set is the set of logins for that site, and a stream element is generated each time someone logs in. This measure is appropriate for a site like Amazon, where the typical user logs in with their unique login name.

A similar problem is a Web site like Google that does not require login to issue a search query, and may be able to identify users only by the URL from which they send the query. Here, the universal set of possible URL's could be thought of as all logical host names (e.g., infolab.stanford.edu), which is essentially infinite. Technically, there are only 4 billion URL's, so that could be considered the universal set as well.

The obvious way to solve the problem is to keep in main memory a list of all the elements seen so far in the stream. Keep them in an efficient search structure such as a hash table or search tree, so one can quickly add new elements and check whether or not the element that just arrived on the stream was already seen. As long as the number of distinct elements is not too great, this structure can fit in main memory and there is little problem obtaining an exact answer to the question how many distinct elements appear in the stream.

However, if the number of distinct elements is too great, or if there are too many streams that need to be processed at once (e.g., Yahoo! wants to count the number of unique users viewing each of its pages in a month), then we cannot store the needed data in main memory. There are several options. We could use more machines, each machine handling only one or several of the streams. We could store most of the data structure in secondary memory and batch stream elements so whenever we brought a disk block to main memory there would be many tests and updates to be performed on the data in that
block. Or we could use the strategy to be discussed in this section, where we only estimate the number of distinct elements but use much less memory than the number of distinct elements.

4.4.2 The Flajolet-Martin Algorithm

It is possible to estimate the number of distinct elements by hashing the elements of the universal set to a bit-string that is sufficiently long. The length of the bit-string must be sufficient that there are more possible results of the hash function than there are elements of the universal set. For example, 64 bits is sufficient to hash URL's. We shall pick many different hash functions and hash each element of the stream using these hash functions. The important property of a hash function is that when applied to the same element, it always produces the same result. Notice that this property was also essential for the sampling technique of Section 4.2.

The idea behind the Flajolet-Martin Algorithm is that the more different elements we see in the stream, the more different hash-values we shall see. As we see more different hash-values, it becomes more likely that one of these values will be "unusual." The particular unusual property we shall exploit is that the value ends in many 0 's, although many other options exist.

Whenever we apply a hash function h to a stream element a, the bit string $h(a)$ will end in some number of 0 's, possibly none. Call this number the tail length for a and h. Let R be the maximum tail length of any a seen so far in the stream. Then we shall use estimate 2^{R} for the number of distinct elements seen in the stream.

This estimate makes intuitive sense. The probability that a given stream element a has $h(a)$ ending in at least $r 0$'s is 2^{-r}. Suppose there are m distinct elements in the stream. Then the probability that none of them has tail length at least r is $\left(1-2^{-r}\right)^{m}$. This sort of expression should be familiar by now. We can rewrite it as $\left(\left(1-2^{-r}\right)^{2^{r}}\right)^{m 2^{-r}}$. Assuming r is reasonably large, the inner expression is of the form $(1-\epsilon)^{1 / \epsilon}$, which is approximately $1 / e$. Thus, the probability of not finding a stream element with as many as $r 0$'s at the end of its hash value is $e^{-m 2^{-r}}$. We can conclude:

1. If m is much larger than 2^{r}, then the probability that we shall find a tail of length at least r approaches 1 .
2. If m is much less than 2^{r}, then the probability of finding a tail length at least r approaches 0 .

We conclude from these two points that the proposed estimate of m, which is 2^{R} (recall R is the largest tail length for any stream element) is unlikely to be either much too high or much too low.

4.4.3 Combining Estimates

Unfortunately, there is a trap regarding the strategy for combining the estimates of m, the number of distinct elements, that we obtain by using many different hash functions. Our first assumption would be that if we take the average of the values 2^{R} that we get from each hash function, we shall get a value that approaches the true m, the more hash functions we use. However, that is not the case, and the reason has to do with the influence an overestimate has on the average.

Consider a value of r such that 2^{r} is much larger than m. There is some probability p that we shall discover r to be the largest number of 0 's at the end of the hash value for any of the m stream elements. Then the probability of finding $r+1$ to be the largest number of 0 's instead is at least $p / 2$. However, if we do increase by 1 the number of 0 's at the end of a hash value, the value of 2^{R} doubles. Consequently, the contribution from each possible large R to the expected value of 2^{R} grows as R grows, and the expected value of 2^{R} is actually infinite. ${ }^{2}$

Another way to combine estimates is to take the median of all estimates. The median is not affected by the occasional outsized value of 2^{R}, so the worry described above for the average should not carry over to the median. Unfortunately, the median suffers from another defect: it is always a power of 2 . Thus, no matter how many hash functions we use, should the correct value of m be between two powers of 2 , say 400 , then it will be impossible to obtain a close estimate.

There is a solution to the problem, however. We can combine the two methods. First, group the hash functions into small groups, and take their average. Then, take the median of the averages. It is true that an occasional outsized 2^{R} will bias some of the groups and make them too large. However, taking the median of group averages will reduce the influence of this effect almost to nothing. Moreover, if the groups themselves are large enough, then the averages can be essentially any number, which enables us to approach the true value m as long as we use enough hash functions. In order to guarantee that any possible average can be obtained, groups should be of size at least a small multiple of $\log _{2} m$.

4.4.4 Space Requirements

Observe that as we read the stream it is not necessary to store the elements seen. The only thing we need to keep in main memory is one integer per hash function; this integer records the largest tail length seen so far for that hash function and any stream element. If we are processing only one stream, we could use millions of hash functions, which is far more than we need to get a

[^1]close estimate. Only if we are trying to process many streams at the same time would main memory constrain the number of hash functions we could associate with any one stream. In practice, the time it takes to compute hash values for each stream element would be the more significant limitation on the number of hash functions we use.

4.4.5 Exercises for Section 4.4

Exercise 4.4.1: Suppose our stream consists of the integers 3, 1, 4, 1, 5, 9, 2, 6,5 . Our hash functions will all be of the form $h(x)=a x+b \bmod 32$ for some a and b. You should treat the result as a 5 -bit binary integer. Determine the tail length for each stream element and the resulting estimate of the number of distinct elements if the hash function is:
a $h(x)=2 x+1 \bmod 32$.
(b) $h(x)=3 x+7 \bmod 32$.
(c) $h(x)=4 x \bmod 32$.
! Exercise 4.4.2: Do you see any problems with the choice of hash functions in Exercise 4.4.1? What advice could you give someone who was going to use a hash function of the form $h(x)=a x+b \bmod 2^{k}$?

4.5 Estimating Moments

In this section we consider a generalization of the problem of counting distinct elements in a stream. The problem, called computing "moments," involves the distribution of frequencies of different elements in the stream. We shall define moments of all orders and concentrate on computing second moments, from which the general algorithm for all moments is a simple extension.

4.5.1 Definition of Moments

Suppose a stream consists of elements chosen from a universal set. Assume the universal set is ordered so we can speak of the i th element for any i. Let m_{i} be the number of occurrences of the i th element for any i. Then the k th-order moment (or just k th moment) of the stream is the sum over all i of $\left(m_{i}\right)^{k}$.

Example 4.6: The 0th moment is the sum of 1 for each m_{i} that is greater than $0 .^{3}$ That is, the 0th moment is a count of the number of distinct elements in the stream. We can use the method of Section 4.4 to estimate the 0th moment of a stream.

[^2]The 1st moment is the sum of the m_{i} 's, which must be the length of the stream. Thus, first moments are especially easy to compute; just count the length of the stream seen so far.

The second moment is the sum of the squares of the m_{i} 's. It is sometimes called the surprise number, since it measures how uneven the distribution of elements in the the stream is. To see the distinction, suppose we have a stream of length 100, in which eleven different elements appear. The most even distribution of these eleven elements would have one appearing 10 times and the other ten appearing 9 times each. In this case, the surprise number is $10^{2}+10 \times 9^{2}=910$. At the other extreme, one of the eleven elements could appear 90 times and the other ten appear 1 time each. Then, the surprise number would be $90^{2}+10 \times 1^{2}=8110$.

As in Section 4.4, there is no problem computing moments of any order if we can afford to keep in main memory a count for each element that appears in the stream. However, also as in that section, if we cannot afford to use that much memory, then we need to estimate the k th moment by keeping a limited number of values in main memory and computing an estimate from these values. For the case of distinct elements, each of these values were counts of the longest tail produced by a single hash function. We shall see another form of value that is useful for second and higher moments.

4.5.2 The Alon-Matias-Szegedy Algorithm for Second Moments

For now, let us assume that a stream has a particular length n. We shall show how to deal with growing streams in the next section. Suppose we do not have enough space to count all the m_{i} 's for all the elements of the stream. We can still estimate the second moment of the stream using a limited amount of space; the more space we use, the more accurate the estimate will be. We compute some number of variables. For each variable X, we store:

1. A particular element of the universal set, which we refer to as X.element, and
2. An integer X.value, which is the value of the variable. To determine the value of a variable X, we choose a position in the stream between 1 and n, uniformly and at random. Set X. element to be the element found there, and initialize $X . v a l u e$ to 1 . As we read the stream, add 1 to X.value each time we encounter another occurrence of X.element.

Example 4.7: Suppose the stream is $a, b, c, b, d, a, c, d, a, b, d, c, a, a, b$. The length of the stream is $n=15$. Since a appears 5 times, b appears 4 times, and c and d appear three times each, the second moment for the stream is $5^{2}+4^{2}+3^{2}+3^{2}=59$. Suppose we keep three variables, X_{1}, X_{2}, and X_{3}. Also,
assume that at "random" we pick the 3 rd, 8 th, and 13 th positions to define these three variables.

When we reach position 3 , we find element c, so we set X_{1}.element $=c$ and X_{1}.value $=1$. Position 4 holds b, so we do not change X_{1}. Likewise, nothing happens at positions 5 or 6 . At position 7 , we see c again, so we set X_{1}. value $=2$.

At position 8 we find d, and so set X_{2}. element $=d$ and $X_{2} . v a l u e=1$. Positions 9 and 10 hold a and b, so they do not affect X_{1} or X_{2}. Position 11 holds d so we set X_{2}.value $=2$, and position 12 holds c so we set X_{1}.value $=3$. At position 13, we find element a, and so set X_{3}.element $=a$ and X_{3}. value $=1$. Then, at position 14 we see another a and so set X_{3}.value $=2$. Position 15 , with element b does not affect any of the variables, so we are done, with final values X_{1}. value $=3$ and X_{2}. value $=X_{3}$. value $=2$.

We can derive an estimate of the second moment from any variable X. This estimate is $n \times(2 \times X$.value -1$)$.

Example 4.8: Consider the three variables from Example 4.7. From X_{1} we derive the estimate $n \times\left(2 \times X_{1}\right.$.value -1$)=15 \times(2 \times 3-1)=75$. The other two variables, X_{2} and X_{3}, each have value 2 at the end, so their estimates are $15 \times(2 \times 2-1)=45$. Recall that the true value of the second moment for this stream is 59 . On the other hand, the average of the three estimates is 55 , a fairly close approximation.

4.5.3 Why the Alon-Matias-Szegedy Algorithm Works

We can prove that the expected value of any variable constructed as in Section 4.5.2 is the second moment of the stream from which it is constructed. Some notation will make the argument easier to follow. Let $e(i)$ be the stream element that appears at position i in the stream, and let $c(i)$ be the number of times element $e(i)$ appears in the stream among positions $i, i+1, \ldots, n$.

Example 4.9: Consider the stream of Example 4.7. $e(6)=a$, since the 6 th position holds a. Also, $c(6)=4$, since a appears at positions 9,13 , and 14 , as well as at position 6 . Note that a also appears at position 1 , but that fact does not contribute to $c(6)$.

The expected value of X.value is the average over all positions i between 1 and n of $n \times(2 \times c(i)-1)$, that is

$$
E(X . \text { value })=\frac{1}{n} \sum_{i=1}^{n} n \times(2 \times c(i)-1)
$$

We can simplify the above by canceling factors $1 / n$ and n, to get

$$
E(X . \text { value })=\sum_{i=1}^{n}(2 c(i)-1)
$$

However, to make sense of the formula, we need to change the order of summation by grouping all those positions that have the same element. For instance, concentrate on some element a that appears m_{a} times in the stream. The term for the last position in which a appears must be $2 \times 1-1=1$. The term for the next-to-last position in which a appears is $2 \times 2-1=3$. The positions with a before that yield terms 5,7 , and so on, up to $2 m_{a}-1$, which is the term for the first position in which a appears. That is, the formula for the expected value of X.value can be written:

$$
E(X . v a l u e)=\sum_{a} 1+3+5+\cdots+\left(2 m_{a}-1\right)
$$

Note that $1+3+5+\cdots+\left(2 m_{a}-1\right)=\left(m_{a}\right)^{2}$. The proof is an easy induction on the number of terms in the sum. Thus, $E($ X.value $)=\sum_{a}\left(m_{a}\right)^{2}$, which is the definition of the second moment.

4.5.4 Higher-Order Moments

We estimate k th moments, for $k>2$, in essentially the same way as we estimate second moments. The only thing that changes is the way we derive an estimate from a variable. In Section 4.5.2 we used the formula $n \times(2 v-1)$ to turn a value v, the count of the number of occurrences of some particular stream element a, into an estimate of the second moment. Then, in Section 4.5.3 we saw why this formula works: the terms $2 v-1$, for $v=1,2, \ldots, m$ sum to m^{2}, where m is the number of times a appears in the stream.

Notice that $2 v-1$ is the difference between v^{2} and $(v-1)^{2}$. Suppose we wanted the third moment rather than the second. Then all we have to do is replace $2 v-1$ by $v^{3}-(v-1)^{3}=3 v^{2}-3 v+1$. Then $\sum_{v=1}^{m} 3 v^{2}-3 v+1=m^{3}$, so we can use as our estimate of the third moment the formula $n \times\left(3 v^{2}-3 v+1\right)$, where $v=X$.value is the value associated with some variable X. More generally, we can estimate k th moments for any $k \geq 2$ by turning value $v=X$.value into $n \times\left(v^{k}-(v-1)^{k}\right)$.

4.5.5 Dealing With Infinite Streams

Technically, the estimate we used for second and higher moments assumes that n, the stream length, is a constant. In practice, n grows with time. That fact, by itself, doesn't cause problems, since we store only the values of variables and multiply some function of that value by n when it is time to estimate the moment. If we count the number of stream elements seen and store this value, which only requires $\log n$ bits, then we have n available whenever we need it.

A more serious problem is that we must be careful how we select the positions for the variables. If we do this selection once and for all, then as the stream gets longer, we are biased in favor of early positions, and the estimate of the moment will be too large. On the other hand, if we wait too long to pick positions, then
early in the stream we do not have many variables and so will get an unreliable estimate.

The proper technique is to maintain as many variables as we can store at all times, and to throw some out as the stream grows. The discarded variables are replaced by new ones, in such a way that at all times, the probability of picking any one position for a variable is the same as that of picking any other position. Suppose we have space to store s variables. Then the first s positions of the stream are each picked as the position of one of the s variables.

Inductively, suppose we have seen n stream elements, and the probability of any particular position being the position of a variable is uniform, that is s / n. When the $(n+1)$ st element arrives, pick that position with probability $s /(n+1)$. If not picked, then the s variables keep their same positions. However, if the $(n+1)$ st position is picked, then throw out one of the current s variables, with equal probability. Replace the one discarded by a new variable whose element is the one at position $n+1$ and whose value is 1 .

Surely, the probability that position $n+1$ is selected for a variable is what it should be: $s /(n+1)$. However, the probability of every other position also is $s /(n+1)$, as we can prove by induction on n. By the inductive hypothesis, before the arrival of the $(n+1)$ st stream element, this probability was s / n. With probability $1-s /(n+1)$ the $(n+1)$ st position will not be selected, and the probability of each of the first n positions remains s / n. However, with probability $s /(n+1)$, the $(n+1)$ st position is picked, and the probability for each of the first n positions is reduced by factor $(s-1) / s$. Considering the two cases, the probability of selecting each of the first n positions is

$$
\left(1-\frac{s}{n+1}\right)\left(\frac{s}{n}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)\left(\frac{s}{n}\right)
$$

This expression simplifies to

$$
\left(1-\frac{s}{n+1}\right)\left(\frac{s}{n}\right)+\left(\frac{s-1}{n+1}\right)\left(\frac{s}{n}\right)
$$

and then to

$$
\left(\left(1-\frac{s}{n+1}\right)+\left(\frac{s-1}{n+1}\right)\right)\left(\frac{s}{n}\right)
$$

which in turn simplifies to

$$
\left(\frac{n}{n+1}\right)\left(\frac{s}{n}\right)=\frac{s}{n+1}
$$

Thus, we have shown by induction on the stream length n that all positions have equal probability s / n of being chosen as the position of a variable.

4.5.6 Exercises for Section 4.5

Exercise 4.5.1: Compute the surprise number (second moment) for the stream $3,1,4,1,3,4,2,1,2$. What is the third moment of this stream?

A General Stream-Sampling Problem

Notice that the technique described in Section 4.5.5 actually solves a more general problem. It gives us a way to maintain a sample of s stream elements so that at all times, all stream elements are equally likely to be selected for the sample.

As an example of where this technique can be useful, recall that in Section 4.2 we arranged to select all the tuples of a stream having key value in a randomly selected subset. Suppose that, as time goes on, there are too many tuples associated with any one key. We can arrange to limit the number of tuples for any key K to a fixed constant s by using the technique of Section 4.5 .5 whenever a new tuple for key K arrives.
! Exercise 4.5.2: If a stream has n elements, of which m are distinct, what are the minimum and maximum possible surprise number, as a function of m and n ?

Exercise 4.5.3: Suppose we are given the stream of Exercise 4.5.1, to which we apply the Alon-Matias-Szegedy Algorithm to estimate the surprise number. For each possible value of i, if X_{i} is a variable starting position i, what is the value of X_{i}.value?

Exercise 4.5.4: Repeat Exercise 4.5.3 if the intent of the variables is to compute third moments. What is the value of each variable at the end? What estimate of the third moment do you get from each variable? How does the average of these estimates compare with the true value of the third moment?

Exercise 4.5.5 : Prove by induction on m that $1+3+5+\cdots+(2 m-1)=m^{2}$.

Exercise 4.5.6: If we wanted to compute fourth moments, how would we convert X.value to an estimate of the fourth moment?

4.6 Counting Ones in a Window

We now turn our attention to counting problems for streams. Suppose we have a window of length N on a binary stream. We want at all times to be able to answer queries of the form "how many 1's are there in the last k bits?" for any $k \leq N$. As in previous sections, we focus on the situation where we cannot afford to store the entire window. After showing an approximate algorithm for the binary case, we discuss how this idea can be extended to summing numbers.

4.6.1 The Cost of Exact Counts

To begin, suppose we want to be able to count exactly the number of 1's in the last k bits for any $k \leq N$. Then we claim it is necessary to store all N bits of the window, as any representation that used fewer than N bits could not work. In proof, suppose we have a representation that uses fewer than N bits to represent the N bits in the window. Since there are 2^{N} sequences of N bits, but fewer than 2^{N} representations, there must be two different bit strings w and x that have the same representation. Since $w \neq x$, they must differ in at least one bit. Let the last $k-1$ bits of w and x agree, but let them differ on the k th bit from the right end.

Example 4.10: If $w=0101$ and $x=1010$, then $k=1$, since scanning from the right, they first disagree at position 1. If $w=1001$ and $x=0101$, then $k=3$, because they first disagree at the third position from the right.

Suppose the data representing the contents of the window is whatever sequence of bits represents both w and x. Ask the query "how many 1 's are in the last k bits?" The query-answering algorithm will produce the same answer, whether the window contains w or x, because the algorithm can only see their representation. But the correct answers are surely different for these two bit-strings. Thus, we have proved that we must use at least N bits to answer queries about the last k bits for any k.

In fact, we need N bits, even if the only query we can ask is "how many 1 's are in the entire window of length N ?" The argument is similar to that used above. Suppose we use fewer than N bits to represent the window, and therefore we can find w, x, and k as above. It might be that w and x have the same number of 1's, as they did in both cases of Example 4.10. However, if we follow the current window by any $N-k$ bits, we will have a situation where the true window contents resulting from w and x are identical except for the leftmost bit, and therefore, their counts of 1's are unequal. However, since the representations of w and x are the same, the representation of the window must still be the same if we feed the same bit sequence to these representations. Thus, we can force the answer to the query "how many 1's in the window?" to be incorrect for one of the two possible window contents.

4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm

We shall present the simplest case of an algorithm called DGIM. This version of the algorithm uses $O\left(\log ^{2} N\right)$ bits to represent a window of N bits, and allows us to estimate the number of 1's in the window with an error of no more than 50%. Later, we shall discuss an improvement of the method that limits the error to any fraction $\epsilon>0$, and still uses only $O\left(\log ^{2} N\right)$ bits (although with a constant factor that grows as ϵ shrinks).

To begin, each bit of the stream has a timestamp, the position in which it arrives. The first bit has timestamp 1, the second has timestamp 2, and so on.

Since we only need to distinguish positions within the window of length N, we shall represent timestamps modulo N, so they can be represented by $\log _{2} N$ bits. If we also store the total number of bits ever seen in the stream (i.e., the most recent timestamp) modulo N, then we can determine from a timestamp modulo N where in the current window the bit with that timestamp is.

We divide the window into buckets, ${ }^{4}$ consisting of:

1. The timestamp of its right (most recent) end.
2. The number of 1 's in the bucket. This number must be a power of 2 , and we refer to the number of 1's as the size of the bucket.

To represent a bucket, we need $\log _{2} N$ bits to represent the timestamp (modulo $N)$ of its right end. To represent the number of 1 's we only need $\log _{2} \log _{2} N$ bits. The reason is that we know this number i is a power of 2 , say 2^{j}, so we can represent i by coding j in binary. Since j is at $\operatorname{most}^{\log _{2} N}$, it requires $\log _{2} \log _{2} N$ bits. Thus, $O(\log N)$ bits suffice to represent a bucket.

There are five rules that must be followed when representing a stream by buckets.

- The right end of a bucket is always a position with a 1 .
- No position is in more than one bucket.
- There are one or two buckets of any given size, up to some maximum size.
- All sizes must be a power of 2 .
- Buckets cannot decrease in size as we move to the left (back in time).
. $.1 \begin{array}{llllllllllllllllllllllllll}1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$

Figure 4.2: A bit-stream divided into buckets following the DGIM rules

Example 4.11: Figure 4.2 shows a bit stream divided into buckets in a way that satisfies the DGIM rules. At the right (most recent) end we see two buckets of size 1. To its left we see one bucket of size 2. Note that this bucket covers

[^3]four positions, but only two of them are 1. Proceeding left, we see two buckets of size 4 , and we suggest that a bucket of size 8 exists further left.

Notice that it is OK for some 0's to lie between buckets. Also, observe from Fig. 4.2 that the buckets do not overlap; there are one or two of each size up to the largest size, and sizes only increase moving left.

In the next sections, we shall explain the following about the DGIM algorithm:

1. Why the number of buckets representing a window must be small.
2. How to estimate the number of 1's in the last k bits for any k, with an error no greater than 50%.
3. How to maintain the DGIM conditions as new bits enter the stream.

4.6.3 Storage Requirements for the DGIM Algorithm

We observed that each bucket can be represented by $O(\log N)$ bits. If the window has length N, then there are no more than N 1's, surely. Suppose the largest bucket is of size 2^{j}. Then j cannot exceed $\log _{2} N$, or else there are more 1's in this bucket than there are 1's in the entire window. Thus, there are at most two buckets of all sizes from $\log _{2} N$ down to 1 , and no buckets of larger sizes.

We conclude that there are $O(\log N)$ buckets. Since each bucket can be represented in $O(\log N)$ bits, the total space required for all the buckets representing a window of size N is $O\left(\log ^{2} N\right)$.

4.6.4 Query Answering in the DGIM Algorithm

Suppose we are asked how many 1's there are in the last k bits of the window, for some $1 \leq k \leq N$. Find the bucket b with the earliest timestamp that includes at least some of the k most recent bits. Estimate the number of 1's to be the sum of the sizes of all the buckets to the right (more recent) than bucket b, plus half the size of b itself.

Example 4.12: Suppose the stream is that of Fig. 4.2, and $k=10$. Then the query asks for the number of 1 's in the ten rightmost bits, which happen to be 0110010110 . Let the current timestamp (time of the rightmost bit) be t. Then the two buckets with one 1 , having timestamps $t-1$ and $t-2$ are completely included in the answer. The bucket of size 2 , with timestamp $t-4$, is also completely included. However, the rightmost bucket of size 4, with timestamp $t-8$ is only partly included. We know it is the last bucket to contribute to the answer, because the next bucket to its left has timestamp less than $t-9$ and thus is completely out of the window. On the other hand, we know the buckets to its right are completely inside the range of the query because of the existence of a bucket to their left with timestamp $t-9$ or greater.

Our estimate of the number of 1's in the last ten positions is thus 6. This number is the two buckets of size 1 , the bucket of size 2 , and half the bucket of size 4 that is partially within range. Of course the correct answer is 5 .

Suppose the above estimate of the answer to a query involves a bucket b of size 2^{j} that is partially within the range of the query. Let us consider how far from the correct answer c our estimate could be. There are two cases: the estimate could be larger or smaller than c.

Case 1: The estimate is less than c. In the worst case, all the 1's of b are actually within the range of the query, so the estimate misses half bucket b, or $2^{j-1} 1$'s. But in this case, c is at least 2^{j}; in fact it is at least $2^{j+1}-1$, since there is at least one bucket of each of the sizes $2^{j-1}, 2^{j-2}, \ldots, 1$. We conclude that our estimate is at least 50% of c.

Case 2: The estimate is greater than c. In the worst case, only the rightmost bit of bucket b is within range, and there is only one bucket of each of the sizes smaller than b. Then $c=1+2^{j-1}+2^{j-2}+\cdots+1=2^{j}$ and the estimate we give is $2^{j-1}+2^{j-1}+2^{j-2}+\cdots+1=2^{j}+2^{j-1}-1$. We see that the estimate is no more than 50% greater than c.

4.6.5 Maintaining the DGIM Conditions

Suppose we have a window of length N properly represented by buckets that satisfy the DGIM conditions. When a new bit comes in, we may need to modify the buckets, so they continue to represent the window and continue to satisfy the DGIM conditions. First, whenever a new bit enters:

- Check the leftmost (earliest) bucket. If its timestamp has now reached the current timestamp minus N, then this bucket no longer has any of its 1 's in the window. Therefore, drop it from the list of buckets.

Now, we must consider whether the new bit is 0 or 1 . If it is 0 , then no further change to the buckets is needed. If the new bit is a 1 , however, we may need to make several changes. First:

- Create a new bucket with the current timestamp and size 1.

If there was only one bucket of size 1 , then nothing more needs to be done. However, if there are now three buckets of size 1, that is one too many. We fix this problem by combining the leftmost (earliest) two buckets of size 1.

- To combine any two adjacent buckets of the same size, replace them by one bucket of twice the size. The timestamp of the new bucket is the timestamp of the rightmost (later in time) of the two buckets.

Combining two buckets of size 1 may create a third bucket of size 2. If so, we combine the leftmost two buckets of size 2 into a bucket of size 4. That, in turn, may create a third bucket of size 4 , and if so we combine the leftmost two
into a bucket of size 8 . This process may ripple through the bucket sizes, but there are at most $\log _{2} N$ different sizes, and the combination of two adjacent buckets of the same size only requires constant time. As a result, any new bit can be processed in $O(\log N)$ time.

Example 4.13: Suppose we start with the buckets of Fig. 4.2 and a 1 enters. First, the leftmost bucket evidently has not fallen out of the window, so we do not drop any buckets. We create a new bucket of size 1 with the current timestamp, say t. There are now three buckets of size 1 , so we combine the leftmost two. They are replaced with a single bucket of size 2. Its timestamp is $t-2$, the timestamp of the bucket on the right (i.e., the rightmost bucket that actually appears in Fig. 4.2.

Figure 4.3: Modified buckets after a new 1 arrives in the stream
There are now two buckets of size 2, but that is allowed by the DGIM rules. Thus, the final sequence of buckets after the addition of the 1 is as shown in Fig. 4.3.

4.6.6 Reducing the Error

Instead of allowing either one or two of each size bucket, suppose we allow either $r-1$ or r of each of the exponentially growing sizes $1,2,4, \ldots$, for some integer $r>2$. In order to represent any possible number of 1's, we must relax this condition for the buckets of the largest size present; there may be any number, from 1 to r, of these.

The rule for combining buckets is essentially the same as in Section 4.6.5. If we get $r+1$ buckets of size 2^{j}, combine the leftmost two into a bucket of size 2^{j+1}. That may, in turn, cause there to be $r+1$ buckets of size 2^{j+1}, and if so we continue combining buckets of larger sizes.

The argument used in Section 4.6.4 can also be used here. However, because there are more buckets of smaller sizes, we can get a stronger bound on the error. We saw there that the largest relative error occurs when only one 1 from the leftmost bucket b is within the query range, and we therefore overestimate the true count. Suppose bucket b is of size 2^{j}. Then the true count is at least $1+(r-1)\left(2^{j-1}+2^{j-2}+\cdots+1\right)=1+(r-1)\left(2^{j}-1\right)$. The overestimate is $2^{j-1}-1$. Thus, the fractional error is

$$
\frac{2^{j-1}-1}{1+(r-1)\left(2^{j}-1\right)}
$$

Bucket Sizes and Ripple-Carry Adders

There is a pattern to the distribution of bucket sizes as we execute the basic algorithm of Section 4.6.5. Think of two buckets of size 2^{j} as a " 1 " in position j and one bucket of size 2^{j} as a " 0 " in that position. Then as 1's arrive in the stream, the bucket sizes after each 1 form consecutive binary integers. The occasional long sequences of bucket combinations are analogous to the occasional long rippling of carries as we go from an integer like 101111 to 110000 .

No matter what j is, this fraction is upper bounded by $1 /(r-1)$. Thus, by picking r sufficiently large, we can limit the error to any desired $\epsilon>0$.

4.6.7 Extensions to the Counting of Ones

It is natural to ask whether we can extend the technique of this section to handle aggregations more general than counting 1's in a binary stream. An obvious direction to look is to consider streams of integers and ask if we can estimate the sum of the last k integers for any $1 \leq k \leq N$, where N, as usual, is the window size.

It is unlikely that we can use the DGIM approach to streams containing both positive and negative integers. We could have a stream containing both very large positive integers and very large negative integers, but with a sum in the window that is very close to 0 . Any imprecision in estimating the values of these large integers would have a huge effect on the estimate of the sum, and so the fractional error could be unbounded.

For example, suppose we broke the stream into buckets as we have done, but represented the bucket by the sum of the integers therein, rather than the count of 1 's. If b is the bucket that is partially within the query range, it could be that b has, in its first half, very large negative integers and in its second half, equally large positive integers, with a sum of 0 . If we estimate the contribution of b by half its sum, that contribution is essentially 0 . But the actual contribution of that part of bucket b that is in the query range could be anything from 0 to the sum of all the positive integers. This difference could be far greater than the actual query answer, and so the estimate would be meaningless.

On the other hand, some other extensions involving integers do work. Suppose that the stream consists of only positive integers in the range 1 to 2^{m} for some m. We can treat each of the m bits of each integer as if it were a separate stream. We then use the DGIM method to count the 1's in each bit. Suppose the count of the i th bit (assuming bits count from the low-order end, starting
at 0$)$ is c_{i}. Then the sum of the integers is

$$
\sum_{i=0}^{m-1} c_{i} 2^{i}
$$

If we use the technique of Section 4.6.6 to estimate each c_{i} with fractional error at most ϵ, then the estimate of the true sum has error at most ϵ. The worst case occurs when all the c_{i} 's are overestimated or all are underestimated by the same fraction.

4.6.8 Exercises for Section 4.6

Exercise 4.6.1: Suppose the window is as shown in Fig. 4.2. Estimate the number of 1 's the the last k positions, for $k=$ (a) 5 (b) 15 . In each case, how far off the correct value is your estimate?
! Exercise 4.6.2: There are several ways that the bit-stream 1001011011101 could be partitioned into buckets. Find all of them.

Exercise 4.6.3: Describe what happens to the buckets if three more 1's enter the window represented by Fig. 4.3. You may assume none of the 1's shown leave the window.

4.7 Decaying Windows

We have assumed that a sliding window held a certain tail of the stream, either the most recent N elements for fixed N, or all the elements that arrived after some time in the past. Sometimes we do not want to make a sharp distinction between recent elements and those in the distant past, but want to weight the recent elements more heavily. In this section, we consider "exponentially decaying windows," and an application where they are quite useful: finding the most common "recent" elements.

4.7.1 The Problem of Most-Common Elements

Suppose we have a stream whose elements are the movie tickets purchased all over the world, with the name of the movie as part of the element. We want to keep a summary of the stream that is the most popular movies "currently." While the notion of "currently" is imprecise, intuitively, we want to discount the popularity of a movie like Star Wars-Episode 4, which sold many tickets, but most of these were sold decades ago. On the other hand, a movie that sold n tickets in each of the last 10 weeks is probably more popular than a movie that sold $2 n$ tickets last week but nothing in previous weeks.

One solution would be to imagine a bit stream for each movie, and give it value 1 if the ticket is for that movie, and 0 otherwise. Pick a window size
N, which is the number of most recent tickets that would be considered in evaluating popularity. Then, use the method of Section 4.6 to estimate the number of tickets for each movie, and rank movies by their estimated counts. This technique might work for movies, because there are only thousands of movies, but it would fail if we were instead recording the popularity of items sold at Amazon, or the rate at which different Twitter-users tweet, because there are too many Amazon products and too many tweeters. Further, it only offers approximate answers.

4.7.2 Definition of the Decaying Window

An alternative approach is to redefine the question so that we are not asking for a count of 1's in a window. Rather, let us compute a smooth aggregation of all the 1's ever seen in the stream, with decaying weights, so the further back in the stream, the less weight is given. Formally, let a stream currently consist of the elements $a_{1}, a_{2}, \ldots, a_{t}$, where a_{1} is the first element to arrive and a_{t} is the current element. Let c be a small constant, such as 10^{-6} or 10^{-9}. Define the exponentially decaying window for this stream to be the sum

$$
\sum_{i=0}^{t-1} a_{t-i}(1-c)^{i}
$$

The effect of this definition is to spread out the weights of the stream elements as far back in time as the stream goes. In contrast, a fixed window with the same sum of the weights, $1 / c$, would put equal weight 1 on each of the most recent $1 / c$ elements to arrive and weight 0 on all previous elements. The distinction is suggested by Fig. 4.4.

Figure 4.4: A decaying window and a fixed-length window of equal weight
It is much easier to adjust the sum in an exponentially decaying window than in a sliding window of fixed length. In the sliding window, we have to worry about the element that falls out of the window each time a new element arrives. That forces us to keep the exact elements along with the sum, or to use an approximation scheme such as DGIM. However, when a new element a_{t+1} arrives at the stream input, all we need to do is:

1. Multiply the current sum by $1-c$.
2. Add a_{t+1}.

The reason this method works is that each of the previous elements has now moved one position further from the current element, so its weight is multiplied by $1-c$. Further, the weight on the current element is $(1-c)^{0}=1$, so adding a_{t+1} is the correct way to include the new element's contribution.

4.7.3 Finding the Most Popular Elements

Let us return to the problem of finding the most popular movies in a stream of ticket sales. ${ }^{5}$ We shall use an exponentially decaying window with a constant c, which you might think of as 10^{-9}. That is, we approximate a sliding window holding the last one billion ticket sales. For each movie, we imagine a separate stream with a 1 each time a ticket for that movie appears in the stream, and a 0 each time a ticket for some other movie arrives. The decaying sum of the 1 's measures the current popularity of the movie.

We imagine that the number of possible movies in the stream is huge, so we do not want to record values for the unpopular movies. Therefore, we establish a threshold, say $1 / 2$, so that if the popularity score for a movie goes below this number, its score is dropped from the counting. For reasons that will become obvious, the threshold must be less than 1 , although it can be any number less than 1 . When a new ticket arrives on the stream, do the following:

1. For each movie whose score we are currently maintaining, multiply its score by $(1-c)$.
2. Suppose the new ticket is for movie M. If there is currently a score for M, add 1 to that score. If there is no score for M, create one and initialize it to 1 .
3. If any score is below the threshold $1 / 2$, drop that score.

It may not be obvious that the number of movies whose scores are maintained at any time is limited. However, note that the sum of all scores is $1 / c$. There cannot be more than $2 / c$ movies with score of $1 / 2$ or more, or else the sum of the scores would exceed $1 / c$. Thus, $2 / c$ is a limit on the number of movies being counted at any time. Of course in practice, the ticket sales would be concentrated on only a small number of movies at any time, so the number of actively counted movies would be much less than $2 / c$.

[^4]
4.8 Summary of Chapter 4

- The Stream Data Model: This model assumes data arrives at a processing engine at a rate that makes it infeasible to store everything in active storage. One strategy to dealing with streams is to maintain summaries of the streams, sufficient to answer the expected queries about the data. A second approach is to maintain a sliding window of the most recently arrived data.
- Sampling of Streams: To create a sample of a stream that is usable for a class of queries, we identify a set of key attributes for the stream. By hashing the key of any arriving stream element, we can use the hash value to decide consistently whether all or none of the elements with that key will become part of the sample.
- Bloom Filters: This technique allows us to filter streams so elements that belong to a particular set are allowed through, while most nonmembers are deleted. We use a large bit array, and several hash functions. Members of the selected set are hashed to buckets, which are bits in the array, and those bits are set to 1 . To test a stream element for membership, we hash the element to a set of bits using each of the hash functions, and only accept the element if all these bits are 1.
- Counting Distinct Elements: To estimate the number of different elements appearing in a stream, we can hash elements to integers, interpreted as binary numbers. 2 raised to the power that is the longest sequence of 0 's seen in the hash value of any stream element is an estimate of the number of different elements. By using many hash functions and combining these estimates, first by taking averages within groups, and then taking the median of the averages, we get a reliable estimate.
- Moments of Streams: The k th moment of a stream is the sum of the k th powers of the counts of each element that appears at least once in the stream. The 0th moment is the number of distinct elements, and the 1st moment is the length of the stream.
- Estimating Second Moments: A good estimate for the second moment, or surprise number, is obtained by choosing a random position in the stream, taking twice the number of times this element appears in the stream from that position onward, subtracting 1, and multiplying by the length of the stream. Many random variables of this type can be combined like the estimates for counting the number of distinct elements, to produce a reliable estimate of the second moment.
- Estimating Higher Moments: The technique for second moments works for k th moments as well, as long as we replace the formula $2 x-1$ (where x is the number of times the element appears at or after the selected position) by $x^{k}-(x-1)^{k}$.
- Estimating the Number of 1's in a Window: We can estimate the number of 1's in a window of 0's and 1's by grouping the 1's into buckets. Each bucket has a number of 1 's that is a power of 2 ; there are one or two buckets of each size, and sizes never decrease as we go back in time. If we record only the position and size of the buckets, we can represent the contents of a window of size N with $O\left(\log ^{2} N\right)$ space.
- Answering Queries About Numbers of 1's: If we want to know the approximate numbers of 1 's in the most recent k elements of a binary stream, we find the earliest bucket B that is at least partially within the last k positions of the window and estimate the number of 1's to be the sum of the sizes of each of the more recent buckets plus half the size of B. This estimate can never be off by more that 50% of the true count of 1 's.
- Closer Approximations to the Number of 1's: By changing the rule for how many buckets of a given size can exist in the representation of a binary window, so that either r or $r-1$ of a given size may exist, we can assure that the approximation to the true number of 1's is never off by more than $1 / r$.
- Exponentially Decaying Windows: Rather than fixing a window size, we can imagine that the window consists of all the elements that ever arrived in the stream, but with the element that arrived t time units ago weighted by $e^{-c t}$ for some time-constant c. Doing so allows us to maintain certain summaries of an exponentially decaying window easily. For instance, the weighted sum of elements can be recomputed, when a new element arrives, by multiplying the old sum by $1-c$ and then adding the new element.
- Maintaining Frequent Elements in an Exponentially Decaying Window: We can imagine that each item is represented by a binary stream, where 0 means the item was not the element arriving at a given time, and 1 means that it was. We can find the elements whose sum of their binary stream is at least $1 / 2$. When a new element arrives, multiply all recorded sums by 1 minus the time constant, add 1 to the count of the item that just arrived, and delete from the record any item whose sum has fallen below $1 / 2$.

4.9 References for Chapter 4

Many ideas associated with stream management appear in the "chronicle data model" of [8]. An early survey of research in stream-management systems is [2]. Also, [6] is a recent book on the subject of stream management.

The sampling technique of Section 4.2 is from [7]. The Bloom Filter is generally attributed to [3], although essentially the same technique appeared as "superimposed codes" in [9].

The algorithm for counting distinct elements is essentially that of [5], although the particular method we described appears in [1]. The latter is also the source for the algorithm for calculating the surprise number and higher moments. However, the technique for maintaining a uniformly chosen sample of positions in the stream is called "reservoir sampling" and comes from [10].

The technique for approximately counting 1's in a window is from [4].

1. N. Alon, Y. Matias, and M. Szegedy, "The space complexity of approximating frequency moments," 28th ACM Symposium on Theory of Computing, pp. 20-29, 1996.
2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, "Models and issues in data stream systems," Symposium on Principles of Database Systems, pp. 1-16, 2002.
3. B.H. Bloom, "Space/time trade-offs in hash coding with allowable errors," Comm. ACM 13:7, pp. 422-426, 1970.
4. M. Datar, A. Gionis, P. Indyk, and R. Motwani, "Maintaining stream statistics over sliding windows," SIAM J. Computing 31, pp. 1794-1813, 2002.
5. P. Flajolet and G.N. Martin, "Probabilistic counting for database applications," 24th Symposium on Foundations of Computer Science, pp. 76-82, 1983.
6. M. Garofalakis, J. Gehrke, and R. Rastogi (editors), Data Stream Management, Springer, 2009.
7. P.B. Gibbons, "Distinct sampling for highly-accurate answers to distinct values queries and event reports," Intl. Conf. on Very Large Databases, pp. 541-550, 2001.
8. H.V. Jagadish, I.S. Mumick, and A. Silberschatz, "View maintenance issues for the chronicle data model," Proc. ACM Symp. on Principles of Database Systems, pp. 113-124, 1995.
9. W.H. Kautz and R.C. Singleton, "Nonadaptive binary superimposed codes," IEEE Transactions on Information Theory 10, pp. 363-377, 1964.
10. J. Vitter, "Random sampling with a reservoir," ACM Transactions on Mathematical Software 11:1, pp. 37-57, 1985.

Chapter 5

Link Analysis

One of the biggest changes in our lives in the decade following the turn of the century was the availability of efficient and accurate Web search, through search engines such as Google. While Google was not the first search engine, it was the first able to defeat the spammers who had made search almost useless. Moreover, the innovation provided by Google was a nontrivial technological advance, called "PageRank." We shall begin the chapter by explaining what PageRank is and how it is computed efficiently.

Yet the war between those who want to make the Web useful and those who would exploit it for their own purposes is never over. When PageRank was established as an essential technique for a search engine, spammers invented ways to manipulate the PageRank of a Web page, often called link spam. ${ }^{1}$ That development led to the response of TrustRank and other techniques for preventing spammers from attacking PageRank. We shall discuss TrustRank and other approaches to detecting link spam.

Finally, this chapter also covers some variations on PageRank. These techniques include topic-sensitive PageRank (which can also be adapted for combating link spam) and the HITS, or "hubs and authorities" approach to evaluating pages on the Web.

5.1 PageRank

We begin with a portion of the history of search engines, in order to motivate the definition of PageRank, ${ }^{2}$ a tool for evaluating the importance of Web pages in a way that it is not easy to fool. We introduce the idea of "random surfers," to explain why PageRank is effective. We then introduce the technique of "taxation" or recycling of random surfers, in order to avoid certain Web structures

[^5]
[^0]: ${ }^{1}$ While we shall refer to "users," the search engine really receives URL's from which the search query was issued. We shall assume that these URL's identify unique users, which is approximately true, but not exactly true.

[^1]: ${ }^{2}$ Technically, since the hash value is a bit-string of finite length, there is no contribution to 2^{R} for R 's that are larger than the length of the hash value. However, this effect is not enough to avoid the conclusion that the expected value of 2^{R} is much too large.

[^2]: ${ }^{3}$ Technically, since m_{i} could be 0 for some elements in the universal set, we need to make explicit in the definition of "moment" that 0^{0} is taken to be 0 . For moments 1 and above, the contribution of m_{i} 's that are 0 is surely 0 .

[^3]: ${ }^{4}$ Do not confuse these "buckets" with the "buckets" discussed in connection with hashing.

[^4]: ${ }^{5}$ This example should be taken with a grain of salt, because, as we pointed out, there aren't enough different movies for this technique to be essential. Imagine, if you will, that the number of movies is extremely large, so counting ticket sales of each one separately is not feasible.

[^5]: ${ }^{1}$ Link spammers sometimes try to make their unethicality less apparent by referring to what they do as "search-engine optimization."
 ${ }^{2}$ The term PageRank comes from Larry Page, the inventor of the idea and a founder of Google.

